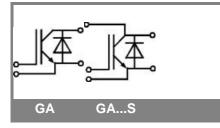


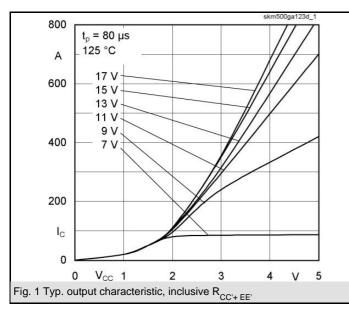
SEMITRANSTM4

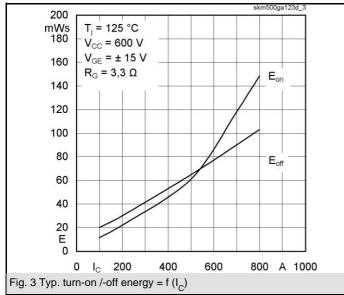
IGBT Modules

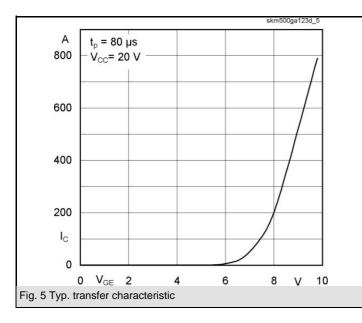
SKM 500GA123D SKM 500GA123DS

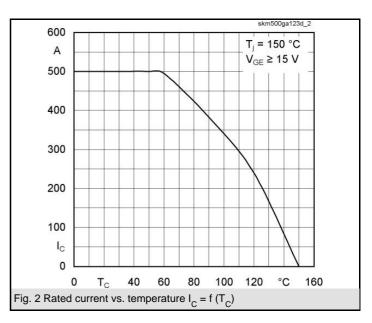
Features

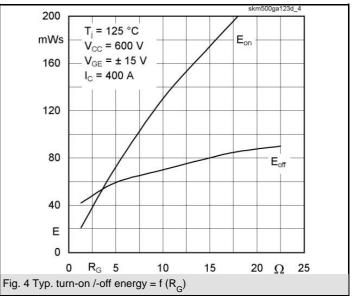

- MOS input (voltage controlled)
- N channel, homgeneous Si
- Low inductance case
- Very low tail current with low temperature dependence
- High short circuit capability, self limiting to 6 x I_{cnom}
- Latch-up free
- Fast & soft CAL diodes
- Isolated copper baseplate using DBC Direct Copper Bonding Technology
- Large clearance (12 mm) and creepage distances (20 mm)

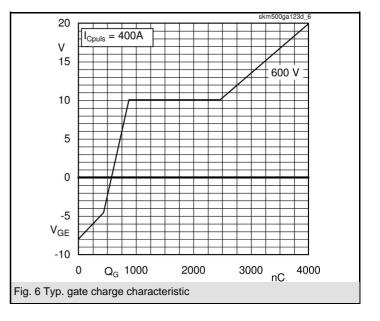

Typical Applications

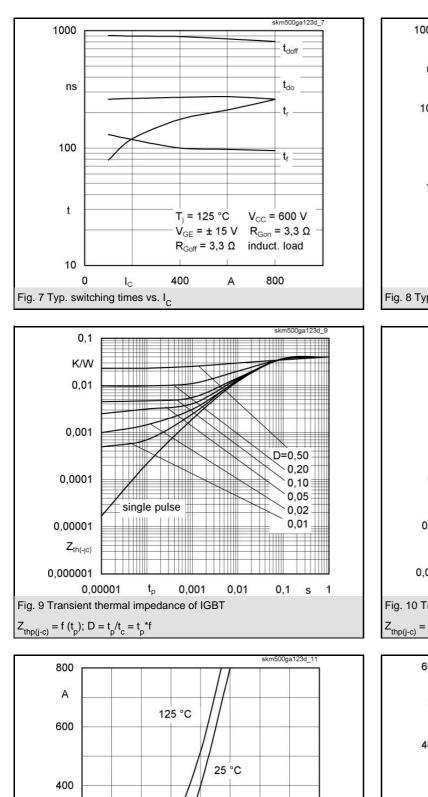

• Switching (not for linear use)

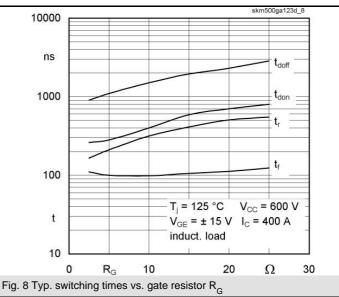

Absolute Maximum Ratings		T _c = 25 °C, unless otherwise specified			
Symbol	Conditions	Values	Units		
IGBT					
V _{CES}		1200	V		
I _C	T _c = 25 (80) °C	500 (420)	А		
ICRM	$t_{\rm p} = 1 \rm ms$	800	А		
V _{GES}	F	± 20	V		
T _{vj} , (T _{stg})	$T_{OPERATION} \leq T_{stg}$	- 40+ 150 (125)	°C		
V _{isol}	AC, 1 min.	2500	V		
Inverse o	liode				
I _F	T _c = 25 (80) °C	500 (350)	А		
I _{FRM}	$t_p = 1 \text{ ms}$	800	А		
I _{FSM}	t _p = 10 ms; sin.; T _i = 150 °C	3600	А		

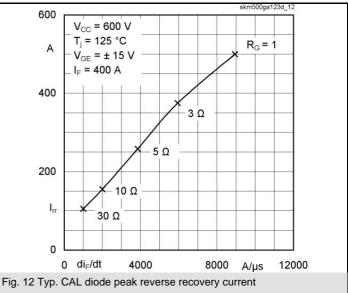

Characte	ristics	Г _с = 25 °С	$_{\rm c}$ = 25 °C, unless otherwise specified				
Symbol	Conditions	min.	typ.	max.	Units		
IGBT		•					
$V_{GE(th)}$	$V_{GE} = V_{CE}$, $I_{C} = 16 \text{ mA}$	4,5	5,5	6,5	V		
I _{CES}	V _{GE} = 0, V _{CE} = V _{CES} , T _j = 25 (125) °C		0,1	0,3	mA		
V _{CE(TO)}	T _j = 25 (125) °C		1,4 (1,6)		V		
r _{CE}	V _{GE} = 15 V, T _j = 25 (125) °C		2,75 (3,75)	3,5 (4,75)	mΩ		
V _{CE(sat)}	I_{Cnom} = 400 A, V_{GE} = 15 V, chip level		2,5 (3,1)	3 (3,7)	V		
C _{ies}	under following conditions		26	40	nF		
C _{oes}	V _{GE} = 0, V _{CE} = 25 V, f = 1 MHz		4	5,2	nF		
C _{res}			2	2,6	nF		
L _{CE}				20	nH		
R _{CC'+EE'}	res., terminal-chip T _c = 25 (125) °C		0,18 (0,22)		mΩ		
t _{d(on)}	V _{CC} = 600 V, I _{Cnom} = 400 A		250	600	ns		
t	R _{Gon} = R _{Goff} = 3,3 Ω, T _j = 125 °C		170	340	ns		
t _{d(off)}	V _{GE} = ± 15 V		900	1100	ns		
t _f			100	125	ns		
$E_{on} \left(E_{off} \right)$			45 (53)		mJ		
Inverse d	liode						
$V_F = V_{EC}$	I _{Fnom} = 400 A; V _{GE} = 0 V; T _j = 25 (125) °C		2 (1,8)	2,5	V		
V _(TO)	T _i = 125 () °C			1,2	V		
r _T	T _i = 125 () °C		1,5	3	mΩ		
I _{RRM}	I _{Fnom} = 400 A; T _j = 25 (125) °C		90 (160)		А		
Q _{rr}	di/dt = 2000 A/µs		15 (50)		μC		
E _{rr}	V _{GE} = V				mJ		
Thermal	characteristics						
R _{th(j-c)}	per IGBT			0,041	K/W		
R _{th(j-c)D}	per Inverse Diode			0,09	K/W		
R _{th(c-s)}	per module			0,038	K/W		
Mechanic	cal data	·			•		
M _s	to heatsink M6	3		5	Nm		
M _t	to terminals M6, M4				Nm		
w				330	g		











© by SEMIKRON

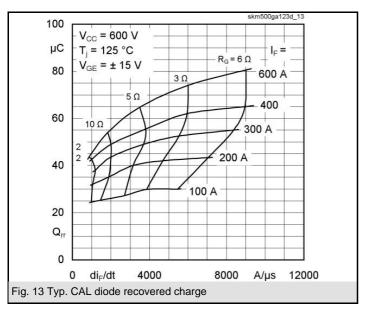
200

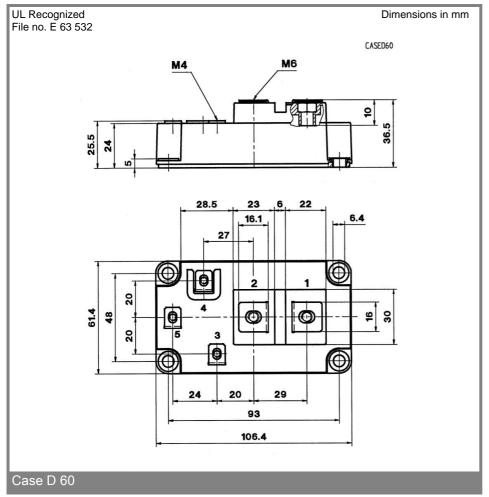
 I_F

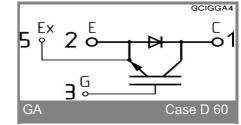
0

0

V_F 1


Fig. 11 CAL diode forward characteristic


2


3

V

4

This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability.